Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
International Journal of Applied Earth Observation and Geoinformation ; 121:103376, 2023.
Article in English | ScienceDirect | ID: covidwho-20231021

ABSTRACT

Infectious disease spreading is a spatial interaction process. Assessing community vulnerability to infectious diseases thus requires not only information on local demographic and built environmental conditions, but also insights into human activity interactions with neighboring areas that can lead to the transition of vulnerability from locations to locations. This study presented an analytical framework based on the Particle Swarm Optimization model to estimate the weights of the factors for vulnerability modeling, and a local proportional parameter for use in the integration of the local and neighboring area risks. A country model and five cross-region validation models were developed for the case study of Singapore to assess the vulnerability to COVID-19. The results showed that the identified weights for the factors were robust throughout the optimization process and across various models. The local proportional parameter could be set slightly higher in between 0.6 and 0.8 (out of 1), signifying that the local effect was higher than the neighboring effect. Computation of the weights from the optimal solutions for the integrated vulnerability index showed that the factors of human activity intensity and accessibility to amenities had much higher weights, at 0.5 and 0.3, respectively. Conversely, the weights of population density, elderly population, social economic status and land use diversity were much lower. These findings underscored the importance of considering non-equal weights for factors and incorporating spatial interactions between local and neighboring areas for vulnerability modeling, to provide to a more comprehensive assessment of vulnerability to infectious diseases.

2.
BMC Infect Dis ; 21(1): 1053, 2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1463234

ABSTRACT

INTRODUCTION: The first detected case in Lebanon on 21 February 2020 engendered implementation of a nationwide lockdown alongside timely contact-tracing and testing. OBJECTIVES: Our study aims to calculate the serial interval of SARS-CoV-2 using contact tracing data collected 21 February to 30 June 2020 in Lebanon to guide testing strategies. METHODS: rRT-PCR positive COVID-19 cases reported to the Ministry of Public Health Epidemiological Surveillance Program (ESU-MOH) are rapidly investigated and identified contacts tested. Positive cases and contacts assigned into chains of transmission during the study time-period were verified to identify those symptomatic, with non-missing date-of-onset and reported source of exposure. Selected cases were classified in infector-infectee pairs. We calculated mean and standard deviation for the serial interval and best distribution fit using AIC criterion. RESULTS: Of a total 1788 positive cases reported, we included 103 pairs belonging to 24 chains of transmissions. Most cases were Lebanese (98%) and male (63%). All infectees acquired infection locally. Mean serial interval was 5.24 days, with a standard deviation of 3.96 and a range of - 4 to 16 days. Normal distribution was an acceptable fit for our non-truncated data. CONCLUSION: Timely investigation and social restriction measures limited recall and reporting biases. Pre-symptomatic transmission up to 4 days prior to symptoms onset was documented among close contacts. Our SI estimates, in line with international literature, provided crucial information that fed into national contact tracing measures. Our study, demonstrating the value of contact-tracing data for evidence-based response planning, can help inform national responses in other countries.


Subject(s)
COVID-19 , Contact Tracing , Communicable Disease Control , Female , Humans , Lebanon/epidemiology , Male , SARS-CoV-2
3.
Vaccine ; 39(5): 780-785, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-989367

ABSTRACT

Although the direct health impact of Coronavirus disease (COVID-19) pandemic on child health is low, there are indirect impacts across many aspects. We compare childhood vaccine uptake in three types of healthcare facilities in Singapore - public primary care clinics, a hospital paediatric unit, and private paediatrician clinics - from January to April 2020, to baseline, and calculate the impact on herd immunity for measles. We find a 25.6% to 73.6% drop in Measles-Mumps-Rubella (MMR) uptake rates, 0.4 - 10.3% drop for Diphtheria-Tetanus-Pertussis-inactivated Polio-Haemophilus influenza (5-in-1), and 8.0-67.8% drop for Pneumococcal conjugate vaccine (PCV) across all 3 sites. Consequent herd immunity reduces to 74-84% among 12-month- to 2-year-olds, well below the 95% coverage that is protective for measles. This puts the whole community at risk for a measles epidemic. Public health efforts are urgently needed to maintain efficacious coverage for routine childhood vaccines during the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Child Health/statistics & numerical data , Public Health/standards , Vaccination Coverage/statistics & numerical data , COVID-19/prevention & control , Child, Preschool , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Haemophilus Vaccines/administration & dosage , Hepatitis B Vaccines/administration & dosage , Humans , Immunity, Herd , Immunization Schedule , Infant , Measles-Mumps-Rubella Vaccine/administration & dosage , Poliovirus Vaccine, Inactivated/administration & dosage , Retrospective Studies , Singapore/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL